Automated Trading with Genetic-Algorithm Neural-Network Risk Cybernetics: An Application on FX Markets
Finamatrix Journal, February 2012
2012
- 12,386Usage
- 35Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Paper Description
Recent years have witnessed the advancement of automated algorithmic trading systems as institutional solutions in the form of autobots, black box or expert advisors. However, little research has been done in this area with sufficient evidence to show the efficiency of these systems. This paper builds an automated trading system which implements an optimized genetic-algorithm neural-network (GANN) model with cybernetic concepts and evaluates the success using a modified value-at-risk (MVaR) framework. The cybernetic engine includes a circular causal feedback control feature and a developed golden-ratio estimator, which can be applied to any form of market data in the development of risk-pricing models. The paper applies the Euro and Yen forex rates as data inputs. It is shown that the technique is useful as a trading and volatility control system for institutions including central bank monetary policy as a risk-minimizing strategy. Furthermore, the results are achieved within a 30-second timeframe for an intra-week trading strategy, offering relatively low latency performance. The results show that risk exposures are reduced by four to five times with a maximum possible success rate of 96%, providing evidence for further research and development in this area.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know