Misunderstanding Models in Environmental and Public Health Regulation
NYU Environmental Law Journal, Vol. 18, 2010
2010
- 1Citations
- 2,565Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Paper Description
Computational models are fundamental to environmental regulation, yet their capabilities tend to be misunderstood by policymakers. Rather than rely on models to illuminate dynamic and uncertain relationships in natural settings, policymakers too often use models as “answer machines.” This fundamental misperception that models can generate decisive facts leads to a perverse negative feedback loop that begins with policymaking itself and radiates into the science of modeling and into regulatory deliberations where participants can exploit the misunderstanding in strategic ways. This paper documents the pervasive misperception of models as truth machines in U.S. regulation and the multi-layered problems that result from this misunderstanding. The paper concludes with a series of proposals for making better use of models in environmental policy analysis.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know