Online Advertising Response Models: Incorporating Multiple Creatives and Impression Histories
SSRN Electronic Journal
2011
- 1Citations
- 5,956Usage
- 24Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations1
- Citation Indexes1
- CrossRef1
- 1
- Usage5,956
- Abstract Views4,910
- 4,890
- Downloads1,046
- 1,046
- Captures24
- Readers23
- 17
- SSRN6
- Exports-Saves1
- SSRN1
Article Description
Online advertising campaigns often consist of multiple ads, each with different creative content. We propose a model that evaluates the effectiveness of each creative in a campaign given the targeted individual’s ad impression history, as characterized by the timing and mix of previously seen ad creatives. We examine the impact that each ad impression has on both visitation and conversion behavior at the advertised brand’s website. Our model is constructed at the individual level and takes into account correlations among the rates of ad impressions, website visits and conversions. We also allow for the accumulation and decay of advertising effects, as well as ad wear-out and restoration effects. Our results highlight the importance of accommodating both the existence of multiple ad creatives in an ad campaign as well as the impact of an individual’s ad impression history. We demonstrate with a simulation how this modeling approach can be used for online ad targeting. Specifically, our results suggest that, using our model, online advertisers can increase the number of website visits and conversions by varying the creative content shown to an individual according to that individual’s history of previous ad impressions. For our data, we show a 12.7% increase in the expected number of visits and a 13.8% increase in the expected number of conversions.
Bibliographic Details
http://www.ssrn.com/abstract=1896486; http://dx.doi.org/10.2139/ssrn.1896486; https://scholar.smu.edu/business_marketing_research/13; https://scholar.smu.edu/cgi/viewcontent.cgi?article=1012&context=business_marketing_research; https://dx.doi.org/10.2139/ssrn.1896486; https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1896486; https://ssrn.com/abstract=1896486
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know