The 2016 Power Trading Agent Competition
SSRN Electronic Journal
2016
- 4Citations
- 4,012Usage
- 6Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This is the specification for the Power Trading Agent Competition for 2016 (Power TAC 2016). Power TAC is a competitive simulation that models a “liberalized” retail electrical energy market, where competing business entities or “brokers” offer energy services to customers through tariff contracts, and must then serve those customers by trading in a wholesale market. Brokers are challenged to maximize their profits by buying and selling energy in the wholesale and retail markets, subject to fixed costs and constraints; the winner of an individual “game” is the broker with the highest bank balance at the end of a simulation run. Costs include fees for publication and withdrawal of tariffs, and distribution fees for transporting energy to their contracted customers. Costs are also incurred whenever there is an imbalance between a broker’s total contracted energy supply and demand within a given time slot. The simulation environment models a wholesale market, a regulated distribution utility, and a population of energy customers, situated in a real location on Earth during a specific period for which weather data is available. The wholesale market is a relatively simple call market, similar to many existing wholesale electric power markets, such as Nord Pool in Scandinavia or FERC markets in North America, but unlike the FERC markets we are modeling a single region, and therefore we approximate locational-marginal pricing through a simple manipulation of the wholesale supply curve. Customer models include households, electric vehicles, and a variety of commercial and industrial entities, many of which have production capacity such as solar panels or wind turbines. All have “real-time” metering to support allocation of their hourly supply and demand to their subscribed brokers, and all are approximate utility maximizers with respect to tariff selection, although the factors making up their utility functions may include aversion to change and complexity that can retard uptake of marginally better tariff offers. The distribution utility models the regulated natural monopoly that owns the regional distribution network, and is responsible for maintenance of its infrastructure. Real-time balancing of supply and demand is managed by a market-based mechanism that uses economic incentives to encourage brokers to achieve balance within their portfolios of tariff subscribers and wholesale market posi- tions, in the face of stochastic customer behaviors and weather-dependent renewable energy sources. Changes for 2016 are focused on a more realistic cost model for brokers, and are highlighted by change bars in the margins. See Section 7 for details.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know