Wisdom of Crowds: Is Nonfinancial Information Disseminated on Twitter Informative About Future Fundamentals?
SSRN Electronic Journal
2017
- 44Citations
- 4,149Usage
- 5Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This paper examines whether third-party-generated product information on Twitter, once aggregated at the firm level, is predictive of firm-level sales, and if so, what factors determine the cross-sectional variation in the predictive power. First, the predictive power of Twitter comments increases with the extent to which they fairly represent the broad customer response to products and brands. The predictive power is greater for firms whose major customers are consumers rather than businesses. Second, the word-of-mouth effect of Twitter comments is greater when advertising is limited. Third, a detailed analysis of the identity of the tweet handles provides the additional insights that the predictive power of the volume of Twitter comments is dominated by “the wisdom of crowds,” whereas the predictive power of the valence of Twitter comments is largely attributable to expert comments. Furthermore, Twitter comments not only reflect upcoming sales, but also capture an unexpected component of sales growth.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know