Synthetic Difference-In-Differences Estimation With Staggered Treatment Timing
SSRN Electronic Journal
2022
- 10Citations
- 4,651Usage
- 5Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This note formalizes the synthetic difference-in-differences estimator for staggered treatment adoption settings, as briefly described in Arkhangelsky et al. (2021). To illustrate the importance of this estimator, I use replication data from Abrams (2012). I compare the estimators obtained using SynthDiD, TWFE, the group time average treatment effect estimator of Callaway and Sant'Anna (2021), and the partially pooled synthetic control method estimator of Ben-Michael et al. (2021) in a staggered treatment adoption setting. I find that in this staggered treatment setting, SynthDiD provides a numerically different estimate of the average treatment effect. Simulation results show that these differences may be attributable to the underlying data generating process more closely mirroring that of the latent factor model assumed for SynthDiD than that of additive fixed effects assumed under traditional difference-in-differences frameworks.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know