The Problem of Ubiquitous Computing for Regulatory Costs
SSRN Electronic Journal
2023
- 650Usage
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The benefits of regulation should exceed the cost of regulating. This paper investigates the impact of widespread general-purpose computing on the cost of enforcing of regulations on generative artificial intelligence (AI) and decentralized finance (DeFi). We present a simple model illustrating regulators' preferences for minimising enforcement costs and discuss the implications of regulatory preferences for the number and size of regulated firms. Regulators would rather regulate a small number of large firms rather than a large number of small firms. General-purpose computing radically expands the number of potentially regulated entities. For Defi, the decentralized nature of blockchain technology, global scale of transactions, and decentralised hosting increase the number of potentially regulated entities by an order of magnitude. Likewise, locally deployed open-source generative AI models make regulating AI safety extremely difficult. This creates a regulatory dilemma that forces regulators to reassess the social harm of targeted economic activity. The paper draws a historical comparison with the attempts to reduce copyright infringement through file sharing in the early 2000s in order to present strategic options for regulators in addressing the challenges of AI safety and DeFi compliance.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know