Processing and Microstructure–Property Relations of Al-Mg-Si-Fe Crossover Alloys
SSRN, ISSN: 1556-5068
2023
- 1Citations
- 315Usage
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This study investigates the processing and microstructure–property relations in new crossover aluminum alloys derived from 6xxx and 8xxx foil stock alloys. The new alloys combine the age-hardening capability of Al-Mg-Si alloys with the microstructure-controlling effect on processing of primary intermetallic phases used in foil stock. A highly Fe-rich intermetallic phase content was deployed to conceptually mimic high scrap content. Fast and slow solidification rates were applied to represent thin strip and direct chill casting, respectively. The effects of adding Fe and Mn to alloy 6016 were examined, while the Si consumed in primary phases was partly adjusted to maintain age-hardening potential. It was shown that upon thermomechanical processing, primary intermetallic phases in the new alloys are finely fragmented and well dispersed, resulting in strong grain refinement and a uniform texture. Attractive combinations of strength and ductility were revealed, also in material processed under direct chill casting conditions. The new alloys’ high elongation values of up to 30%, and their age-hardening response, were similar to those seen in commercial alloy 6016, while their strain hardening capacity was significantly greater. This can be attributed mainly to the formation of geometrically necessary dislocations near primary Fe-rich intermetallic phases. The study discusses microstructure refinement on the basis of particle stimulated nucleation. It uses a simple model to describe the individual contributions to yield strength, including the effect of primary phases. It also models the effect of these particles on increased strain hardening and ductility.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know