AI-Driven Cloud Security: Examining the Impact of User Behavior Analysis on Threat Detection
SSRN Electronic Journal
2024
- 3,090Usage
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This study explores the comparative effectiveness of AI-driven user behavior analysis and traditional security measures in cloud computing environments. It specifically examines their accuracy, speed, and predictive capabilities in detecting and responding to cyber threats. As reliance on cloud-based solutions intensifies, the integration of Artificial Intelligence (AI) and machine learning into cloud security has become increasingly vital. The research focuses on how AI-driven security systems, with their advanced pattern recognition and anomaly detection, compare to traditional methods in identifying deviations from standard user behaviors in cloud settings. Employing a quantitative approach, the study utilizes a detailed survey strategy, targeting cybersecurity professionals across multiple industries, including finance, healthcare, information technology, retail, and government sectors. The survey, comprising both closed-ended and Likert-scale questions, is designed to elicit nuanced responses on the perceptions and experiences of these professionals regarding AI-driven versus traditional security methods in cloud environments. The data, collected from a purposive sample of 243 cybersecurity personnel, is analyzed using multiple regression analysis. This analysis facilitates an understanding of the impact of different security systems on the efficacy of threat detection and response in cloud contexts. The results indicate that while both AI-driven and traditional methods significantly improve threat detection accuracy, traditional methods show a slight edge. Conversely, AI-driven systems demonstrate notably superior predictive capabilities and overall enhanced security performance. These findings suggest the necessity of a hybrid security strategy in cloud computing. Such an approach would combine the advanced capabilities of AI, particularly in predictive analytics and adaptability, with the rapid and reliable responses of traditional methods. This integrated strategy is proposed to effectively address the unique challenges posed by the dynamic and complex nature of cloud-based cyber threats. This study provides valuable insights for both businesses and IT professionals on the effective integration of AI-driven security measures in cloud environments. It highlights the evolving role of AI in cloud security and the importance of maintaining a balance between innovative AI approaches and established traditional methods to create a robust, comprehensive cloud security framework.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know