The Dynamics of Seller Reputation: Theory and Evidence from Ebay
NBER Working Paper No. w10363
2004
- 4,808Usage
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Paper Description
We propose a basic theoretical model of eBay's reputation mechanism, derive a series of implications and empirically test their validity. Our theoretical model features both adverse selection and moral hazard. We show that when a seller receives a negative rating for the first time his reputation decreases and so does his effort level. This implies a decline in sales and price; and an increase in the rate of arrival of subsequent negative feedback. Our model also suggests that sellers with worse records are more likely to exit (and possibly re-enter under a new identity), whereas better sellers have more to gain from buying a reputation' by building up a record of favorable feedback through purchases rather than sales. Our empirical evidence, based on a panel data set of seller feedback histories and cross-sectional data on transaction prices collected from eBay is broadly consistent with all of these predictions. An important conclusion of our results is that eBay's reputation system gives way to strategic responses from both buyers and sellers.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know