Asynchronous Choice in Repeated Coordination Games
SSRN Electronic Journal
- 5Citations
- 1,293Usage
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The standard model of repeated games assumes perfect synchronization in the timing of decisions between the players. In many natural settings, however, choices are made synchronously so that only one player can move at a given time. This paper studies a family of repeated settings in which choices are asynchronous. Initially, we examine, as a canonical model, a simple two person alternating move game of pure coordination. There, it is shown that for sufficient patient players, there is a unique perfect equilibrium payoff which Pareto dominates all other payoffs. The result generalizes to any finite number of players and any game in a class of asynchronously repeated games which includes both stochastic and deterministic repetition. The result complement a recent Folk Theorem by Dutta (1995) for stochastic games which can be applied to asynchronously repeated games if a full dimensionality condition holds. A critical feature of the model is the inertia in decisions. We show how the inertia in asynchronous decisions determines the set of equilibrium payoffs.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know