Global Business Cycles and Credit Risk
NBER Working Paper No. w11493
2005
- 3,011Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Paper Description
The potential for portfolio diversification is driven broadly by two characteristics: the degree to which systematic risk factors are correlated with each other and the degree of dependence individual firms have to the different types of risk factors. Using a global vector autoregressive macroeconomic model accounting for about 80% of world output, we propose a model for exploring credit risk diversification across industry sectors and across different countries or regions. We find that full firm-level parameter heterogeneity along with credit rating information matters a great deal for capturing differences in simulated credit loss distributions. These differences become more pronounced in the presence of systematic risk factor shocks: increased parameter heterogeneity reduces shock sensitivity. Allowing for regional parameter heterogeneity seems to better approximate the loss distributions generated by the fully heterogenous model than allowing just for industry heterogeneity. The regional model also exhibits less shock sensitivity.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know